

A Nullstellensatz for ideals of C^∞ functions in dimension 2

Hirofumi KONDO

(Received November 18, 2019; Revised March 18, 2020)

Abstract. Suppose that an ideal J of C^∞ functions on an open subset of \mathbf{R}^2 is a Łojasiewicz ideal. We describe the set of C^∞ functions vanishing on the zeros of J explicitly using J in an open neighborhood of each point in zeros of J , it can be obtained by taking real radical and closure starting from J repeatedly for a finite number of times. This gives an another affirmative answer to Bochnak's conjecture in dimension 2, which is first done by Risler.

Key words: Nullstellensatz, zero property, real radical, closed ideal, Łojasiewicz ideal.

1. Introduction

Let $U \subset \mathbf{R}^n$ be an open set and $\mathcal{E}(U)$ the ring of C^∞ functions on U . For an ideal $J \subset \mathcal{E}(U)$, let $Z(J)$ denote the zeros of J and $J^* \subset \mathcal{E}(U)$ the ideal of C^∞ functions vanishing on $Z(J)$. We say that J has the zero property if $J^* = J$ and that J is real if $g_1^2 + \cdots + g_k^2 \in J$ with all $g_i \in \mathcal{E}(U)$ implies all $g_i \in J$.

In 1973, Bochnak conjectured the following.

Bochnak's Conjecture ([4]) Suppose that $J \subset \mathcal{E}(U)$ is a finitely generated ideal. Then J has the zero property if and only if J is real and closed with respect to C^∞ topology.

In the same paper, Bochnak showed that if all of the generators are analytic, then J has the zero property if and only if J is real. As a corollary, he proved the following: Suppose that $f_1, \dots, f_k \in \mathcal{E}(U)$ are analytic and all f_i have the zero property. Then the product function $f = f_1 \cdots f_k$ has the zero property if and only if the ideal (f) is real. In 1999, we gave a related result to the above Bochnak's result by getting rid of the analyticity condition on f_i and adding some topological conditions for zeros of f . In fact

2020 Mathematics Subject Classification : Primary 26E05, 26E10, 46E25; Secondary 11E25, 32C05, 14P15.

Theorem 1.1 ([6]) *Let M be a connected manifold of class C^∞ and k a positive integer. Suppose that $f_i \in C^\infty(M)$ have the zero property and that $f_i \not\equiv 0$ ($1 \leq i \leq k$). Set $f = f_1 \cdots f_k$. Then the following seven conditions are equivalent.*

- (1) *f has the zero property.*
- (2) *(f) is real, i.e., $g_1^2 + \cdots + g_p^2 \in (f)$ implies $g_i \in (f)$ for $1 \leq i \leq p$.*
- (3) *(f) is a radical, i.e., for some $k \in \mathbf{N}$, $g^k \in (f)$ implies $g \in (f)$.*
- (4) *$\overline{G(f)} = V(f)$, where $V(f)$ denotes the zero set of f and $G(f)$ denotes the set of regular points of f in $V(f)$.*
- (5) *$V(f_i) = \overline{V(f_i) \setminus V(f_j)}$ for $1 \leq i, j \leq k, i \neq j$.*
- (6) *$V(f_i) = \overline{V(f_i) \setminus V(f_{j_1} \cdots f_{j_m})}$ for $1 \leq m \leq k-1$,
 $1 \leq i, j_1, \dots, j_m \leq k, i \neq j_1, \dots, j_m$.*
- (7) *$V(f_i) = \overline{V(f_i) \setminus V(f_1 \cdots f_{i-1})}$ for $1 < i \leq k$.*

In 1976, Risler [12] proved that Bochnak's conjecture is affirmative for $n = 2$, and in some restricted situation for $n = 3$. In the same year, Adkins and Leahy [3] showed that if an ideal $J \subset \mathcal{E}(U)$ is generated by analytic functions, then J^* coincides with the closure of the real radical of J with respect to C^∞ topology.

Recently, Acquistapace, Broglia and Nicoara [1] proved that if J is a Łojasiewicz ideal, then J^* coincides with the closure of the Łojasiewicz radical of J (see Definition 2.1). As applications they recovered the results of Bochnak for an ideal generated by analytic functions and of Adkins-Leahy for the closure of the real radical. Also, they defined the convexity of ideals and referred to the Bochnak's conjecture. They showed that a Łojasiewicz ideal J has the zero property if and only if it is closed, convex and radical. A convex radical ideal is a real ideal, but the converse is unknown, so Bochnak's conjecture is still an open problem.

According to the best of my knowledge, none gave J^* explicitly. However in the case of \mathbf{R}^2 , we show that it is obtained by taking real radical and closure of J repeatedly.

Let $\mathcal{M}_p \subset \mathcal{E}(U)$ denote the ideal of C^∞ functions vanishing at $p \in U$ and \mathcal{M}_p^k denotes its k th power. Let $J \subset \mathcal{E}(U)$ be an ideal. For $\psi \in J$ and $p \in U$, we define the order of ψ and J at p by $\text{ord}_p \psi = \sup\{k | \psi \in \mathcal{M}_p^k\}$ and $\text{ord}_p J = \inf\{\text{ord}_p \psi | \psi \in J\}$. If $J = (f_1, \dots, f_m)$ is finitely generated then we have $\text{ord}_p f = 2 \text{ord}_p J$ for $f = f_1^2 + \cdots + f_m^2$.

We have the following.

Theorem 1.2 *Let $U \subset \mathbf{R}^2$ be open. Let $J \subset \mathcal{E}(U)$ be a Lojasiewicz ideal and $\{J_k\}$ defined by $J_0 = J$, $J_k = \sqrt[r]{J_{k-1}}$ for $k \geq 1$. Let $p \in Z(J)$ and $s = \text{ord}_p J$. Then there exists an open neighborhood U_p of p such that*

$$J^* \mathcal{E}(U_p) = \sqrt[r]{J_{2s-2}} \mathcal{E}(U_p).$$

Immediately we have the following, that is the affirmative answer to Bochnak's conjecture in dimension 2.

Corollary 1.3 (Risler) *Let $U \subset \mathbf{R}^2$ be open. If an ideal $J \subset \mathcal{E}(U)$ is finitely generated, real and closed with respect to C^∞ topology, then $J^* = J$.*

Proof. Since J is finitely generated and closed, J is a Lojasiewicz ideal from Proposition 2.2. Then Theorem 1.2 implies that, for any $p \in Z(J)$, there exists a neighborhood $U_p \subset U$ of p such that

$$J^* \mathcal{E}(U_p) = \sqrt[r]{J_{2s-2}} \mathcal{E}(U_p) = J \mathcal{E}(U_p) \quad (s = \text{ord}_p J).$$

Therefore $J^* = \bar{J}$. Since J is closed, $J^* = J$. □

This paper is organized as follows. In Section 2, we mention some propositions needed later. In Section 3, we prove Theorem 1.2 by induction on $s = \text{ord}_p J$.

2. Preliminaries

Definition 2.1 Let $J \subset \mathcal{E}(U)$ be an ideal. We say that J is a *Lojasiewicz ideal* if the following two conditions are satisfied.

- (1) J is finitely generated.
- (2) There exists an element $g \in J$ having the following property.

For any compact set $K \subset U$, there exist constants $C > 0$ and $\alpha \geq 0$ such that

$$|g(x)| \geq Cd(x, Z(J))^\alpha \quad \text{for all } x \in K,$$

where $d(y, A)$ denote the Euclidean distance of y and A .

Proposition 2.2 *If J is finitely generated and closed, then J is a Lojasiewicz ideal.*

Proof. See [15, p. 103, Corollaire 4.4]. \square

We say that $\psi \in \mathcal{E}(U)$ is *k-flat at p* if $\psi \in \mathcal{M}_p^{k+1}$ and that $\psi \in \mathcal{E}(U)$ is *flat at p* if $\psi \in \mathcal{M}_p^\infty = \cap_{k \in \mathbf{N}} \mathcal{M}_p^k$.

Proposition 2.3 *Let $J \subset \mathcal{E}(U)$ be a Lojasiewicz ideal. Then the following hold.*

- (1) *If $\psi \in \mathcal{E}(U)$ is flat on $Z(J)$, then $\psi \in J$.*
- (2) *There are no points $p \in U$ such that every $\psi \in J$ is flat at p.*

Proof. (1) See [15, p. 102, Proposition 4.3]. (2) If so, the inequality of the definition of Lojasiewicz ideal fails near p . \square

Let $\sum^2 \subset \mathcal{E}(U)$ denote the set of sum of squares. We say that

$$\sqrt[{\mathbb{R}}]{J} = \{\psi \in \mathcal{E}(U) \mid \exists l \in \mathbf{N}, \exists \sigma \in \sum^2 \text{ s.t. } \psi^{2l} + \sigma \in J\}$$

is a *real radical* of J . This is an ideal and J is real if and only if $J = \sqrt[{\mathbb{R}}]{J}$. Let $T_p : \mathcal{E}(U) \rightarrow \mathbf{R}[[x_1 - p_1, \dots, x_n - p_n]]$ be the Taylor map at p .

Proposition 2.4 (Merrien's formal Nullstellensatz) *Let $J \subset \mathcal{E}(U)$ be a Lojasiewicz ideal. If $\psi \in J^*$, then for any $p \in Z(J)$ there exist a positive integer l and an element $\sigma \in \sum^2$ such that $\psi^{2l} + \sigma \in J + \mathcal{M}_p^\infty$.*

Proof. By applying the formal Nullstellensatz ([12, Remarque 1.5]) for each $p \in Z(J)$, it holds that $T_p \psi \in \sqrt[{\mathbb{R}}]{T_p J}$ for all $p \in Z(J)$. Hence there exist a positive integer l and formal power series g_i for all $1 \leq i \leq k$ such that $(T_p \psi)^{2l} + g_1^2 + \dots + g_k^2 \in T_p J$. Then there exist elements $\sigma_i \in \mathcal{E}(U)$ such that $T_p \sigma_i = g_i$ for all $1 \leq i \leq k$. Putting $\sigma = \sigma_1^2 + \dots + \sigma_k^2 \in \sum^2$, we have that $T_p \psi^{2l} + T_p \sigma \in T_p J$. Therefore $\psi^{2l} + \sigma \in J + \mathcal{M}_p^\infty$. \square

Proposition 2.5 (Whitney's spectral theorem [16]) *Let $J \subset \mathcal{E}(U)$ be an ideal and \overline{J} the closure of J with respect to C^∞ topology. Then \overline{J} coincides with the set of $\psi \in \mathcal{E}(U)$ such that $T_p \psi \in T_p J$ for all $p \in Z(J)$.*

Proposition 2.6 *Let $U \subset \mathbf{R}^n$ be an open set and $J \subset \mathcal{E}(U)$ an ideal. If $V \subset U$ is open then*

- (1) $\sqrt[{\mathbb{R}}]{J\mathcal{E}(V)} = \sqrt[{\mathbb{R}}]{J}\mathcal{E}(V)$,
- (2) $\overline{J\mathcal{E}(V)} = \overline{J}\mathcal{E}(V)$.

Proof. See [2, Lemma 3.2 for (1), Lemma 1.1 for (2)]. \square

3. Proof of Theorem 1.2

Let f_1, \dots, f_m be generators of J , set $f = f_1^2 + \dots + f_m^2$. From (2) of Proposition 2.3, $T_p f \neq 0$. Therefore there exist an open neighborhood of p and a local coordinates (t, x) centered at p such that $f(t, x)$ is regular of order $2s$ with respect to t , namely we may write $f(t, 0) = t^{2s}(c + g(t))$ with $c > 0$ and $g(0) = 0$. From the Malgrange preparation theorem, we may write

$$f(t, x) = \{t^{2s} + u_1(x)t^{2s-1} + \dots + u_{2s}(x)\}Q(t, x), \quad Q(0, 0) > 0$$

in an open neighborhood U_0 of the origin of \mathbf{R}^2 . Moreover we may assume that $u_1(x) \equiv 0$ and U_0 is convex by a suitable coordinate change.

Then we define $F \in \mathcal{E}(U_0)$ by

$$F(t, x) = t^{2s} + u_2(x)t^{2s-2} + \dots + u_{2s}(x).$$

To prove that $J^*\mathcal{E}(U_0) = \sqrt[2s-2]{J_{2s-2}}\mathcal{E}(U_0)$, it is sufficient to show that $\varphi|_{U_0} \in \sqrt[2s-2]{(F)_{2s-2}}$ for all $\varphi \in J^*$ from Proposition 2.6.

We will prove by induction on s .

Step 1. In the case of $s = 1$.

In this situation, $F = t^2 + u_2$. Notice that the principle ideal (u_2) is a Łojasiewicz ideal as well as F . Let $\psi = \varphi|_{U_0}$ for $\varphi \in J^*$.

(1) In the case of $u_2 \equiv 0$.

It follows that $\psi(0, x) = 0$ since $Z(F) = \{(t, x) \in U_0 | t = 0\}$. Then there exists an element $\eta \in \mathcal{E}(U_0)$ such that $\psi = t\eta$ since U_0 is convex. Obviously $t \in \sqrt[2]{(F)}$, hence we obtain that $\psi \in \sqrt[2]{(F)}$.

(2) In the case of $u_2 \not\equiv 0$.

From (2) of Proposition 2.3, it holds that $T_0 u_2 \neq 0$. Since u_2 is one variable, we have that $Z(u_2) = \{0\}$ in an open neighborhood of $0 \in \mathbf{R}$. Therefore $Z(F) = \{(0, 0)\}$ in an open neighborhood of $(0, 0) \in \mathbf{R}^2$. Then we replace U_0 with this open neighborhood. From Lemma 2.4, there exist a positive integer l and elements $\sigma \in \sum^2$, $\eta \in \mathcal{E}(U_0)$, $\theta \in \mathcal{M}_{(0,0)}^\infty$ such that $\psi^{2l} + \sigma = F\eta + \theta$. From (1) of Proposition 2.3, it follows that $\theta \in (F)$. Hence it holds that $\psi^{2l} + \sigma \in (F)$. Therefore we obtain that

$$\psi \in \sqrt[2s-4]{(F)}.$$

Step 2. Suppose that $s \geq 2$ and Theorem 1.2 is true for smaller s .

We observe $F \in \mathcal{E}(U_0)$ such that $F = t^{2s} + u_2(x)t^{2s-2} + \cdots + u_{2s}(x)$. Let $Z_r = \{q \in Z(F) \mid \text{ord}_q J = r\}$. Then it follows that $Z(F) = (Z_1 \cup \cdots \cup Z_{s-1}) \cup Z_s$. Let us put $\psi = \varphi|_{U_0}$ for $\varphi \in J^*$. From the hypothesis of induction, for any $q \in Z_r$ ($1 \leq r \leq s-1$), there exists an open neighborhood $U_q \subset U_0$ of q such that $J^* \mathcal{E}(U_q) = \sqrt[2r-2]{(F)} \mathcal{E}(U_q)$. Clearly it holds that $J_{2r-2} \subset J_{2s-4}$ for all $1 \leq r \leq s-1$. Hence it follows that

$$(*) \quad T_q \psi \in T_q \sqrt[2s-4]{(F)} \text{ for all } q \in Z(F) \setminus Z_s.$$

Next, we will observe neighborhoods of points in Z_s . Set $\delta = u_2^2 + \cdots + u_{2s}^2$. Then $(t, x) \in Z_s$ implies $t = 0$ and $\delta(x) = 0$.

Let $(0, x_0) \in Z_s$ be arbitrarily fixed.

(1) In the case of $T_{x_0} \delta \neq 0$.

There exists an open neighborhood V_{x_0} of x_0 such that $Z(\delta) \cap V_{x_0} = \{x_0\}$ since δ is one-variable. Hence there exists an open neighborhood $W_{(0, x_0)}$ of $(0, x_0)$ such that $Z_s \cap W_{(0, x_0)} = \{(0, x_0)\}$. Then it follows that

$$T_{(0, x_0)}(\psi^{2l} + \sigma) \in T_{(0, x_0)}(F) \quad (\sigma \in \Sigma^2)$$

from Proposition 2.4 and

$$T_{(t, x)} \psi \in T_{(t, x)} \sqrt[2s-4]{(F)} \text{ for all } (t, x) \in W_{(0, x_0)} \setminus (0, x_0)$$

from (*). Hence it holds that $T_{(t, x)} \psi(\psi^{2l} + \sigma) \in T_{(t, x)} \sqrt[2s-4]{(F)}$ for all $(t, x) \in W_{(0, x_0)}$. Therefore from Proposition 2.5 and (2) of Proposition 2.6, it follows that

$$\begin{aligned} \psi^2(\psi^{2l} + \sigma) |_{W_{(0, x_0)}} &\in \sqrt[2s-4]{(F)} \mathcal{E}(W_{(0, x_0)}) \\ &= \sqrt[2s-4]{(F)} \mathcal{E}(W_{(0, x_0)}) \\ &= (F)_{2s-3} \mathcal{E}(W_{(0, x_0)}). \end{aligned}$$

Hence from (1) of Proposition 2.6, it holds that

$$\begin{aligned}\psi|_{W_{(0,x_0)}} &\in \sqrt[R]{(F)_{2s-3}\mathcal{E}(W_{(0,x_0)})} \\ &= \sqrt[R]{(F)_{2s-3}}\mathcal{E}(W_{(0,x_0)}).\end{aligned}$$

Therefore we obtain that

$$T_{(0,x_0)}\psi \in T_{(0,x_0)}\sqrt[R]{(F)_{2s-3}}.$$

(2) In the case of $T_{x_0}\delta = 0$.

From Proposition 2.4, there exist a positive integer l and an element $\sigma \in \sum^2$ such that $\psi^{2l} + \sigma \in (F) + \mathcal{M}_{(0,x_0)}^\infty$. Since $T_{x_0}\delta = 0$, it holds that $\psi^{2l} + \sigma \in (t) + \mathcal{M}_{(0,x_0)}^\infty$. Hence we have that $\psi(0, x)^{2l} + \sigma(0, x) \in \mathcal{M}_{x_0}^\infty$. Therefore it holds that $\psi(0, x) \in \mathcal{M}_{x_0}^\infty$. Hence it follows that $\psi \in (t) + \mathcal{M}_{(0,x_0)}^\infty$. Then it holds that

$$\psi^{2s} \in (t^{2s}) + \mathcal{M}_{(0,x_0)}^\infty = (F) + \mathcal{M}_{(0,x_0)}^\infty.$$

Hence it follows that

$$T_{(0,x_0)}\psi^{2s} \in T_{(0,x_0)}(F).$$

From (1) and (2), it follows that

$$(**) \quad T_{(0,x_0)}\psi^{2s} \in T_{(0,x_0)}\sqrt[R]{(F)_{2s-3}} \text{ for all } (0, x_0) \in Z_s.$$

The inclusions $(*)$ and $(**)$ imply that $T_{(t,x)}\psi^{2s} \in T_{(t,x)}\sqrt[R]{(F)_{2s-3}}$ for all $(t, x) \in Z(F)$. From Proposition 2.5, it follows that

$$\psi^{2s} \in \sqrt[R]{(F)_{2s-3}} = (F)_{2s-2}.$$

Thus we obtain $\psi \in \sqrt[R]{(F)_{2s-2}}$. □

Acknowledgements The author would like to express my sincere gratitude to Professor Shuzo Izumi for his helpful advice and encouragement. The author would like to thank the referees for their helpful suggestions.

References

- [1] Acquistapace F., Broglia F. and Nicoara A., *A Nullstellensatz for Łojasiewicz ideals*. Rev. Mat. Iberoam. **30** (2014), 1479–1487.
- [2] Adkins W. A. and Leahy J. V., *Criteria for generation of ideals of differentiable functions*. Duke Math. J. **42** (1975), 707–716.
- [3] Adkins W. A. and Leahy J. V., *A Nullstellensatz for analytic ideals of differentiable functions*. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. **60** (1976), 90–94.
- [4] Bochnak J., *Sur le théorème des zéros de Hilbert “différentiable”*. Topology **12** (1973), 417–424.
- [5] Dubois D. W., *A nullstellensatz for ordered fields*. Ark. Mat. **8** (1969), 111–114.
- [6] Kondo H., *Note on C^∞ functions with the zero property*. Hokkaido Math. J. **28** (1999), 211–216.
- [7] Malgrange B., *Ideals of differentiable functions*. Oxford University Press, Bombay, 1966.
- [8] Merrien J., *Idéaux de l’anneau des séries formelles à coefficients réels et variétés associées*. J. Math. Pures Appl. **50** (1971), 169–187.
- [9] Merrien J., *Un théorème des zéros pour les idéaux de séries formelles à coefficients réels*. C. R. Acad. Sci. Paris **276** (1973), 1055–1058.
- [10] Risler J. J., *Une caractérisation des idéaux des variétés algébriques réelles*. C. R. Acad. Sci. Paris **271** (1970), 1171–1173.
- [11] Risler J. J., *Un théorème des zéros en géométrie analytique réelle*. C. R. Acad. Sci. Paris **274** (1972), 1488–1490.
- [12] Risler J. J., *Le théorème des zéros pour les idéaux de fonctions différentiables en dimension 2 et 3*. Ann. Inst. Fourier (Grenoble) **26** (1976), 73–107.
- [13] Roth B., *Finitely generated ideals of differentiable functions*. Trans. Amer. Math. Soc. **150** (1970), 213–225.
- [14] Tougeron J. C., *Faisceaux différentiables quasi-flasques*. C. R. Acad. Sci. Paris **260** (1965), 2971–2973.
- [15] Tougeron J. C., *Idéaux de fonctions différentiables*. Springer-Verlag, 1972.
- [16] Whitney H., *On ideals of differentiable functions*. Amer. J. Math. **70** (1948), 635–658.

Seisho Senior High School
 1-3-1 Sakawa, Odawara-shi, Kanagawa 256-0816, Japan
 E-mail: kondo@pa.airnet.ne.jp