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A Nullstellensatz for ideals of C°° functions in dimension 2
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Abstract. Suppose that an ideal J of C° functions on an open subset of R? is
a Lojasiewicz ideal. We describe the set of C°° functions vanishing on the zeros of
J explicitly using J in an open neighborhood of each point in zeros of J, it can be
obtained by taking real radical and closure starting from J repeatedly for a finite
number of times. This gives an another affirmative answer to Bochnak’s conjecture in
dimension 2, which is first done by Risler.
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1. Introduction

Let U € R"™ be an open set and £(U) the ring of C* functions on
U. For an ideal J C E(U), let Z(J) denote the zeros of J and J* C £(U)
the ideal of C'*° functions vanishing on Z(J). We say that J has the zero
property if J* = J and that J is real if g7 + -+ + g7 € J with all g; € £(U)
implies all g; € J.

In 1973, Bochnak conjectured the following.

Bochnak’s Conjecture ([4]) Suppose that J C E(U) is a finitely gener-
ated ideal. Then J has the zero property if and only if J is real and closed
with respect to C°° topology.

In the same paper, Bochnak showed that if all of the generators are
analytic, then J has the zero property if and only if J is real. As a corollary,
he proved the following: Suppose that f1,..., fr € E(U) are analytic and
all f; have the zero property. Then the product function f = f;--- fi has
the zero property if and only if the ideal (f) is real. In 1999, we gave a
related result to the above Bochnak’s result by getting rid of the analyticity
condition on f; and adding some topological conditions for zeros of f. In
fact
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Theorem 1.1 ([6]) Let M be a connected manifold of class C*> and k a
positive integer. Suppose that f; € C°°(M) have the zero property and that
fiZ20 (1 <i<k). Set f=f1-fx. Then the following seven conditions
are equivalent.

(1) f has the zero pmperty.

(2) (f) is real, i.e., g12 + -+ g,° € (f) impliesgie(f)forlgigp.

(3) (f) is a mdzcal i.e., for some k € N, g € (f) implies g € (f).

(4) G(f) = V(f), where V(f) denotes the zero set of f and G(f) denotes
the set of reqular points of f in V(f).

5) V(f) =V{)\V () for 1<i,j<k, i#j.

6) V(i) =V{)\V(fir - fi,,) for 1<m<k—1,
1<, 51,0y dm <k, T £ j1,- ooy Jm-

(M) V() =V()\V(fr---fier) for 1<i<k.

In 1976, Risler [12] proved that Bochnak’s conjecture is affirmative for
n = 2, and in some restricted situation for n = 3. In the same year, Adkins
and Leahy [3] showed that if an ideal J C £(U) is generated by analytic
functions, then J* coincides with the closure of the real radical of J with
respect to C*° topology.

Recently, Acquistapace, Broglia and Nicoara [1] proved that if J is a

Lojasiewicz ideal, then J* coincides with the closure of the Lojasiewicz rad-
ical of J (see Definition 2.1). As applications they recovered the results of
Bochnak for an ideal generated by analytic functions and of Adkins-Leahy
for the closure of the real radical. Also, they defined the convexity of ideals
and referred to the Bochnak’s conjecture. They showed that a Lojasiewicz
ideal J has the zero property if and only if it is closed, convex and radi-
cal. A convex radical ideal is a real ideal, but the converse is unknown, so
Bochnak’s conjecture is still an open problem.

According to the best of my knowledge, none gave J* explicitly. However
in the case of R?, we show that it is obtained by taking real radical and
closure of J repeatedly.

Let M, C £(U) denote the ideal of C*° functions vanishing at p € U
and M} denotes its kth power. Let J C £(U) be an ideal. For ¢ € J and
p € U, we define the order of ¢ and J at p by ord,y = sup{k|y € M’;} and
ord,J = inf{ord,y | ¥ € J}. If J = (f1,..., fm) is finitely generated then
we have ord, f = 2ord,J for f= fZ+---+ f2.

We have the following.
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Theorem 1.2 Let U C R? be open. Let J C £(U) be a Lojasiewicz ideal
and {Ji} defined by Jo = J, Jy = ¥/ Jk—1 for k > 1. Let p € Z(J) and
s =ord,J. Then there exists an open neighborhood U, of p such that

JEUp) = V' Jo2s—2 E(Up).
Immediately we have the following, that is the affirmative answer to

Bochnak’s conjecture in dimension 2.

Corollary 1.3 (Risler) Let U C R? be open. If an ideal J C E(U) is
finitely generated, real and closed with respect to C'*° topology, then J* = J.

Proof.  Since J is finitely generated and closed, J is a Lojasiewitz ideal
from Proposition 2.2. Then Theorem 1.2 implies that, for any p € Z(J),
there exists a neighborhood U, C U of p such that

T EWU,) = Yoz EU,) = JEWU,) (s =ord,J).

Therefore J* = J. Since J is closed, J* = J. U

This paper is organized as follows. In Section 2, we mention some
propositions needed later. In Section 3, we prove Theorem 1.2 by induction
on s = ord,J.

2. Preliminaries

Definition 2.1 Let J C £(U) be an ideal. We say that J is a Lojasiewicz
ideal if the following two conditions are satisfied.

(1) J is finitely generated.
(2) There exists an element g € J having the following property.
For any compact set K C U, there exist constants C > 0 and o > 0
such that

lg(z)| > Cd(x, Z(J))* for all x € K,

where d(y, A) denote the Euclidean distance of y and A.

Proposition 2.2 If J is finitely generated and closed, then J is a
Lojasiewicz ideal.
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Proof.  See [15, p. 103, Corollaire 4.4]. O

We say that ¢ € E(U) is k-flat at p if ¥ € M’;‘H and that ¢ € E(U) is
flat at p if p € M° = ﬂkeN/\/l’;.

Proposition 2.3  Let J C £(U) be a Lojasiewicz ideal. Then the following
hold.

(1) If Y € EU) is flat on Z(J), then ¢ € J.
(2) There are no points p € U such that every i € J is flat at p.

Proof. (1) See [15, p. 102, Proposition 4.3]. (2) If so, the inequality of the
definition of Lojasiewicz ideal fails near p. O

Let 5% € £(U) denote the set of sum of squares. We say that
Vi={$pec&U)|71eN,Toe Y’ st. v +oecJ}

is a real radical of J. This is an ideal and .J is real if and only if J = {/J.
Let T, : E(U) — R[[z1 — p1,...,2n — pp]] be the Taylor map at p.

Proposition 2.4 (Merrien’s formal Nullstellensatz) Let J C E(U) be a
Lojasiewicz ideal. If p € J*, then for any p € Z(J) there exist a positive
integer | and an element o € 22 such that v* + o € J + Me.

Proof. By applaying the formal Nullstellensatz ([12, Remarque 1.5]) for
each p € Z(J), it holds that Ty € §/T,J for all p € Z(J). Hence there
exist a positive integer [ and formal power series g; for all 1 < ¢ < k such
that (Tyy)* + g3 + -+ + g7 € T,J. Then there exist elements o; € £(U)
such that T},0; = g; for all 1 <+¢ < k. Putting o = a% 44 a,% € 22, we
have that T,¢* + T,0 € T),J. Therefore v* 4+ 0 € J + M:®. O

Proposition 2.5 (Whitney’s spectral theorem [16]) Let J C E(U) be an
ideal and J the closure of J with respect to C™ topology. Then J coincides
with the set of 1 € E(U) such that Ty € T, J for all p € Z(J).

Proposition 2.6 Let U C R" be an open set and J C E(U) an ideal. If
V C U is open then

(1) ¥IEWV) = YVIEWV),
(2) JE(V) = JEV).
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Proof. See [2, Lemma 3.2 for (1), Lemma 1.1 for (2)]. O

3. Proof of Theorem 1.2

Let fi,..., fm be generators of J, set f = f2 +---+ f2. From (2) of
Proposition 2.3, T},f # 0. Therefore there exist an open neighborhood of
p and a local coordinates (¢,z) centered at p such that f(¢,x) is regular of
order 2s with respect to ¢, namely we may write f(t,0) = t**(c + g(t)) with
¢ > 0 and ¢g(0) = 0. From the Malgrange preparation theorem, we may
write

flt,x) = {t*° +ur ()t + -+ ugs(2)}Q(t,2), Q(0,0) >0

in an open neighborhood Uy of the origin of R%. Moreover we may assume
that ui(x) = 0 and Uy is convex by a suitable coordinate change.

Then we define F' € £(Uy) by
F(t,x) =t 4+ ug(x)t* ™2 + - + ugy(x).

To prove that J*E(Up) = 1/ J2s—2€(Up), it is sufficient to show that

olu, € ¥/ (F)2s—2 for all ¢ € J* from Proposition 2.6.
We will prove by induction on s.

Step 1. In the case of s = 1.
In this situation, F' = t? + uy. Notice that the principle ideal (us) is a
Lojasiewicz ideal as well as F. Let ¢ = ¢|y, for ¢ € J*.

(1) In the case of us = 0.

It follows that ¢ (0,z) = 0 since Z(F') = {(t,x) € Up|t = 0}. Then
there exists an element n € £(Uy) such that ¢ = tn since Up is convex.
Obviously ¢ € §/(F), hence we obtain that ¢ € {/(F).

(2) In the case of us # 0.

From (2) of Proposition 2.3, it holds that Tyus # 0. Since ug is one
variable, we have that Z(u2) = {0} in an open neighborhood of 0 € R.
Therefore Z(F) = {(0,0)} in an open neighborhood of (0,0) € R?. Then
we replace Uy with this open neighborhood. From Lemma 2.4, there
exist a positive integer | and elements o € 327, n € E(Uy), 0 € ME.0)
such that ¢?' + o = Fn+6. From (1) of Proposition 2.3, it follows that
6 € (F). Hence it holds that ¢* + ¢ € (F). Therefore we obtain that



460 H. Kondo

v e Y/ (F).

Step 2. Suppose that s > 2 and Theorem 1.2 is true for smaller s.

We observe I € £(Up) such that F = 25 +ug(2)t** 72+ - - +ugs(x). Let
Z, ={q € Z(F)lordgJ = r}. Then it follows that Z(F') = (Z;U---UZs_1)U
Zs. Let us put ¢ = ¢|y, for ¢ € J*. From the hypothesis of induction, for
any q € Z, (1 <r <s—1), there exists an open neighborhood U, C Uy of
q such that J*E(U,) = {/J2r—2E(Uy). Clearly it holds that Jo,_o C Jog_4
for all 1 <r < s — 1. Hence it follows that

(%) Typ € Ty N/ (F)as—a forall g€ Z(F)\ Z

Next, we will observe neighborhoods of points in Zs. Set § = u3 +---+
u3,. Then (t,z) € Z, implies t = 0 and §(z) =
Let (0,z9) € Zs be arbitrarily fixed.

(1) In the case of Ty, # 0.
There exists an open neighborhood V;,, of x¢ such that Z () N V,, =
{zo} since § is one-variable. Hence there exists an open neighborhood
W0,20) of (0,70) such that Z; N W 5,y = {(0,20)}. Then it follows
that

T(o,m)(?ﬁ” +0) € To,ze)(F) (o€ %?)
from Proposition 2.4 and
T,y € Tit,) V(F)as—y4 for all (t,z) € W0,20) \ (0, 20)
from (x). Hence it holds that T(m)w(wm +0) €Ty m for all

(t,2) € W(0,z). Therefore from Proposition 2.5 and (2) of Proposition
2.6, it follows that

¢2(¢21 ‘W(o EO) \/ 28 48 W(O xo)
= V(F)2s—4aEW(0,20))

= (F)25-3E(W(0,2¢))-

Hence from (1) of Proposition 2.6, it holds that
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BWiny € §(F)as—3EWio,a0)
= V(F)25-3E(W(0,20))-
Therefore we obtain that
T(0,20)¥ € T(0,20) V (F)25-3.

(2) In the case of T,,0 = 0.
From Proposition 2.4, there exist a positive integer [ and an element
o € 3% such that v + o € (F) + MG .y Since Ty, = 0, it holds
that 2 + o € (t) + MG - Hence we have that ¥(0,2)% + 0(0,2) €
M2, Therefore it holds that ¢(0,z) € MZ°. Hence it follows that
¥ € (t) + M ,,)- Then it holds that

U2 € (%) + M o) = (F) + MG 4
Hence it follows that
T(0,00)%% € T(0,00)(F)-
From (1) and (2), it follows that
(%) T(MO)WS € T(0,20) R/(F)gs_3 for all (0,z0) € Zs.

The inclusions () and () imply that T(; ,)1** € T(;4) ¥/ (F)2s—3 for all
(t,z) € Z(F). From Proposition 2.5, it follows that

Y € V/(F)as—z = (F)as—o.

Thus we obtain ¢ € {/(F)2s—2. O
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