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A Nullstellensatz for ideals of C∞ functions in dimension 2
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Abstract. Suppose that an ideal J of C∞ functions on an open subset of R2 is

a  Lojasiewicz ideal. We describe the set of C∞ functions vanishing on the zeros of

J explicitly using J in an open neighborhood of each point in zeros of J, it can be

obtained by taking real radical and closure starting from J repeatedly for a finite

number of times. This gives an another affirmative answer to Bochnak’s conjecture in

dimension 2, which is first done by Risler.
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1. Introduction

Let U ⊂ Rn be an open set and E(U) the ring of C∞ functions on

U . For an ideal J ⊂ E(U), let Z(J) denote the zeros of J and J∗ ⊂ E(U)

the ideal of C∞ functions vanishing on Z(J). We say that J has the zero

property if J∗ = J and that J is real if g2
1 + · · · + g2

k ∈ J with all gi ∈ E(U)

implies all gi ∈ J .

In 1973, Bochnak conjectured the following.

Bochnak’s Conjecture ([4]) Suppose that J ⊂ E(U) is a finitely gener-

ated ideal. Then J has the zero property if and only if J is real and closed

with respect to C∞ topology.

In the same paper, Bochnak showed that if all of the generators are

analytic, then J has the zero property if and only if J is real. As a corollary,

he proved the following: Suppose that f1, . . . , fk ∈ E(U) are analytic and

all fi have the zero property. Then the product function f = f1 · · · fk has

the zero property if and only if the ideal (f) is real. In 1999, we gave a

related result to the above Bochnak’s result by getting rid of the analyticity

condition on fi and adding some topological conditions for zeros of f . In

fact
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Theorem 1.1 ([6]) Let M be a connected manifold of class C∞ and k a

positive integer. Suppose that fi ∈ C∞(M) have the zero property and that

fi ̸≡ 0 (1 ≤ i ≤ k). Set f = f1 · · · fk. Then the following seven conditions

are equivalent.

(1) f has the zero property.

(2) (f) is real, i.e., g1
2 + · · · + gp

2 ∈ (f) implies gi ∈ (f) for 1 ≤ i ≤ p.

(3) (f) is a radical, i.e., for some k ∈ N, gk ∈ (f) implies g ∈ (f).

(4) G(f) = V (f), where V (f) denotes the zero set of f and G(f) denotes

the set of regular points of f in V (f).

(5) V (fi) = V (fi) \ V (fj) for 1 ≤ i, j ≤ k, i ̸= j.

(6) V (fi) = V (fi) \ V (fj1 · · · fjm) for 1 ≤ m ≤ k − 1,

1 ≤ i, j1, . . . , jm ≤ k, i ̸= j1, . . . , jm.

(7) V (fi) = V (fi) \ V (f1 · · · fi−1) for 1 < i ≤ k.

In 1976, Risler [12] proved that Bochnak’s conjecture is affirmative for

n = 2, and in some restricted situation for n = 3. In the same year, Adkins

and Leahy [3] showed that if an ideal J ⊂ E(U) is generated by analytic

functions, then J∗ coincides with the closure of the real radical of J with

respect to C∞ topology.

Recently, Acquistapace, Broglia and Nicoara [1] proved that if J is a

 Lojasiewicz ideal, then J∗ coincides with the closure of the  Lojasiewicz rad-

ical of J (see Definition 2.1). As applications they recovered the results of

Bochnak for an ideal generated by analytic functions and of Adkins-Leahy

for the closure of the real radical. Also, they defined the convexity of ideals

and referred to the Bochnak’s conjecture. They showed that a  Lojasiewicz

ideal J has the zero property if and only if it is closed, convex and radi-

cal. A convex radical ideal is a real ideal, but the converse is unknown, so

Bochnak’s conjecture is still an open problem.

According to the best of my knowledge, none gave J∗ explicitly. However

in the case of R2, we show that it is obtained by taking real radical and

closure of J repeatedly.

Let Mp ⊂ E(U) denote the ideal of C∞ functions vanishing at p ∈ U

and Mk
p denotes its kth power. Let J ⊂ E(U) be an ideal. For ψ ∈ J and

p ∈ U , we define the order of ψ and J at p by ordpψ = sup{k|ψ ∈ Mk
p} and

ordpJ = inf{ordpψ | ψ ∈ J}. If J = (f1, . . . , fm) is finitely generated then

we have ordpf = 2 ordpJ for f = f2
1 + · · · + f2

m.

We have the following.
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Theorem 1.2 Let U ⊂ R2 be open. Let J ⊂ E(U) be a  Lojasiewicz ideal

and {Jk} defined by J0 = J , Jk = R
√
Jk−1 for k ≥ 1. Let p ∈ Z(J) and

s = ordpJ . Then there exists an open neighborhood Up of p such that

J∗E(Up) = R
√
J2s−2 E(Up).

Immediately we have the following, that is the affirmative answer to

Bochnak’s conjecture in dimension 2.

Corollary 1.3 (Risler) Let U ⊂ R2 be open. If an ideal J ⊂ E(U) is

finitely generated, real and closed with respect to C∞ topology, then J∗ = J .

Proof. Since J is finitely generated and closed, J is a  Lojasiewitz ideal

from Proposition 2.2. Then Theorem 1.2 implies that, for any p ∈ Z(J),

there exists a neighborhood Up ⊂ U of p such that

J∗E(Up) = R
√
J2s−2 E(Up) = JE(Up) (s = ordpJ).

Therefore J∗ = J . Since J is closed, J∗ = J . □

This paper is organized as follows. In Section 2, we mention some

propositions needed later. In Section 3, we prove Theorem 1.2 by induction

on s = ordpJ .

2. Preliminaries

Definition 2.1 Let J ⊂ E(U) be an ideal. We say that J is a  Lojasiewicz

ideal if the following two conditions are satisfied.

(1) J is finitely generated.

(2) There exists an element g ∈ J having the following property.

For any compact set K ⊂ U , there exist constants C > 0 and α ≥ 0

such that

|g(x)| ≥ Cd(x,Z(J))α for all x ∈ K,

where d(y,A) denote the Euclidean distance of y and A.

Proposition 2.2 If J is finitely generated and closed, then J is a

 Lojasiewicz ideal.
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Proof. See [15, p. 103, Corollaire 4.4]. □

We say that ψ ∈ E(U) is k-flat at p if ψ ∈ Mk+1
p and that ψ ∈ E(U) is

flat at p if ψ ∈ M∞
p = ∩k∈NMk

p.

Proposition 2.3 Let J ⊂ E(U) be a  Lojasiewicz ideal. Then the following

hold.

(1) If ψ ∈ E(U) is flat on Z(J), then ψ ∈ J .

(2) There are no points p ∈ U such that every ψ ∈ J is flat at p.

Proof. (1) See [15, p. 102, Proposition 4.3]. (2) If so, the inequality of the

definition of  Lojasiewicz ideal fails near p. □

Let
∑2 ⊂ E(U) denote the set of sum of squares. We say that

R
√
J =

{
ψ ∈ E(U) | ∃l ∈ N, ∃σ ∈

∑2
s.t. ψ2l + σ ∈ J

}
is a real radical of J . This is an ideal and J is real if and only if J = R

√
J .

Let Tp : E(U) → R[[x1 − p1, . . . , xn − pn]] be the Taylor map at p.

Proposition 2.4 (Merrien’s formal Nullstellensatz) Let J ⊂ E(U) be a

 Lojasiewicz ideal. If ψ ∈ J∗, then for any p ∈ Z(J) there exist a positive

integer l and an element σ ∈
∑2

such that ψ2l + σ ∈ J + M∞
p .

Proof. By applaying the formal Nullstellensatz ([12, Remarque 1.5]) for

each p ∈ Z(J), it holds that Tpψ ∈ R
√
TpJ for all p ∈ Z(J). Hence there

exist a positive integer l and formal power series gi for all 1 ≤ i ≤ k such

that (Tpψ)2l + g2
1 + · · · + g2

k ∈ TpJ . Then there exist elements σi ∈ E(U)

such that Tpσi = gi for all 1 ≤ i ≤ k. Putting σ = σ2
1 + · · · + σ2

k ∈
∑2

, we

have that Tpψ
2l + Tpσ ∈ TpJ . Therefore ψ2l + σ ∈ J + M∞

p . □

Proposition 2.5 (Whitney’s spectral theorem [16]) Let J ⊂ E(U) be an

ideal and J the closure of J with respect to C∞ topology. Then J coincides

with the set of ψ ∈ E(U) such that Tpψ ∈ TpJ for all p ∈ Z(J).

Proposition 2.6 Let U ⊂ Rn be an open set and J ⊂ E(U) an ideal. If

V ⊂ U is open then

(1) R
√
JE(V ) = R

√
JE(V ),

(2) JE(V ) = JE(V ).
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Proof. See [2, Lemma 3.2 for (1), Lemma 1.1 for (2)]. □

3. Proof of Theorem 1.2

Let f1, . . . , fm be generators of J , set f = f2
1 + · · · + f2

m. From (2) of

Proposition 2.3, Tpf ̸= 0. Therefore there exist an open neighborhood of

p and a local coordinates (t, x) centered at p such that f(t, x) is regular of

order 2s with respect to t, namely we may write f(t, 0) = t2s(c+ g(t)) with

c > 0 and g(0) = 0. From the Malgrange preparation theorem, we may

write

f(t, x) = {t2s + u1(x)t2s−1 + · · · + u2s(x)}Q(t, x), Q(0, 0) > 0

in an open neighborhood U0 of the origin of R2. Moreover we may assume

that u1(x) ≡ 0 and U0 is convex by a suitable coordinate change.

Then we define F ∈ E(U0) by

F (t, x) = t2s + u2(x)t2s−2 + · · · + u2s(x).

To prove that J∗E(U0) = R
√
J2s−2E(U0), it is sufficient to show that

φ|U0
∈ R

√
(F )2s−2 for all φ ∈ J∗ from Proposition 2.6.

We will prove by induction on s.

Step 1. In the case of s = 1.

In this situation, F = t2 + u2. Notice that the principle ideal (u2) is a

 Lojasiewicz ideal as well as F . Let ψ = φ|U0
for φ ∈ J∗.

(1) In the case of u2 ≡ 0.

It follows that ψ(0, x) = 0 since Z(F ) = {(t, x) ∈ U0|t = 0}. Then

there exists an element η ∈ E(U0) such that ψ = tη since U0 is convex.

Obviously t ∈ R
√

(F ), hence we obtain that ψ ∈ R
√

(F ).

(2) In the case of u2 ̸≡ 0.

From (2) of Proposition 2.3, it holds that T0u2 ̸= 0. Since u2 is one

variable, we have that Z(u2) = {0} in an open neighborhood of 0 ∈ R.

Therefore Z(F ) = {(0, 0)} in an open neighborhood of (0, 0) ∈ R2. Then

we replace U0 with this open neighborhood. From Lemma 2.4, there

exist a positive integer l and elements σ ∈
∑2

, η ∈ E(U0), θ ∈ M∞
(0,0)

such that ψ2l + σ = Fη+ θ. From (1) of Proposition 2.3, it follows that

θ ∈ (F ). Hence it holds that ψ2l + σ ∈ (F ). Therefore we obtain that
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ψ ∈ R
√

(F ).

Step 2. Suppose that s ≥ 2 and Theorem 1.2 is true for smaller s.

We observe F ∈ E(U0) such that F = t2s+u2(x)t2s−2 + · · ·+u2s(x). Let

Zr = {q ∈ Z(F )|ordqJ = r}. Then it follows that Z(F ) = (Z1∪· · ·∪Zs−1)∪
Zs. Let us put ψ = φ|U0

for φ ∈ J∗. From the hypothesis of induction, for

any q ∈ Zr (1 ≤ r ≤ s − 1), there exists an open neighborhood Uq ⊂ U0 of

q such that J∗E(Uq) = R
√
J2r−2E(Uq). Clearly it holds that J2r−2 ⊂ J2s−4

for all 1 ≤ r ≤ s− 1. Hence it follows that

(∗) Tqψ ∈ Tq
R
√

(F )2s−4 for all q ∈ Z(F ) \ Zs.

Next, we will observe neighborhoods of points in Zs. Set δ = u2
2 + · · ·+

u2
2s. Then (t, x) ∈ Zs implies t = 0 and δ(x) = 0.

Let (0, x0) ∈ Zs be arbitrarily fixed.

(1) In the case of Tx0δ ̸= 0.

There exists an open neighborhood Vx0
of x0 such that Z(δ) ∩ Vx0

=

{x0} since δ is one-variable. Hence there exists an open neighborhood

W(0,x0) of (0, x0) such that Zs ∩W(0,x0) = {(0, x0)}. Then it follows

that

T(0,x0)(ψ
2l + σ) ∈ T(0,x0)(F ) (σ ∈ Σ2)

from Proposition 2.4 and

T(t,x)ψ ∈ T(t,x)
R
√

(F )2s−4 for all (t, x) ∈W(0,x0) \ (0, x0)

from (∗). Hence it holds that T(t,x)ψ(ψ2l + σ) ∈ T(t,x)
R
√

(F )2s−4 for all

(t, x) ∈ W(0,x0). Therefore from Proposition 2.5 and (2) of Proposition

2.6, it follows that

ψ2(ψ2l + σ) |W(0,x0)
∈ R

√
(F )2s−4E(W(0,x0))

= R
√

(F )2s−4E(W(0,x0))

= (F )2s−3E(W(0,x0)).

Hence from (1) of Proposition 2.6, it holds that
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ψ|W(0,x0)
∈ R

√
(F )2s−3E(W(0,x0))

= R
√

(F )2s−3E(W(0,x0)).

Therefore we obtain that

T(0,x0)ψ ∈ T(0,x0)
R
√

(F )2s−3.

(2) In the case of Tx0
δ = 0.

From Proposition 2.4, there exist a positive integer l and an element

σ ∈
∑2

such that ψ2l + σ ∈ (F ) + M∞
(0,x0). Since Tx0δ = 0, it holds

that ψ2l + σ ∈ (t) + M∞
(0,x0). Hence we have that ψ(0, x)2l + σ(0, x) ∈

M∞
x0

. Therefore it holds that ψ(0, x) ∈ M∞
x0

. Hence it follows that

ψ ∈ (t) + M∞
(0,x0). Then it holds that

ψ2s ∈ (t2s) + M∞
(0,x0) = (F ) + M∞

(0,x0).

Hence it follows that

T(0,x0)ψ
2s ∈ T(0,x0)(F ).

From (1) and (2), it follows that

(∗∗) T(0,x0)ψ
2s ∈ T(0,x0)

R
√

(F )2s−3 for all (0, x0) ∈ Zs.

The inclusions (∗) and (∗∗) imply that T(t,x)ψ
2s ∈ T(t,x)

R
√

(F )2s−3 for all

(t, x) ∈ Z(F ). From Proposition 2.5, it follows that

ψ2s ∈ R
√

(F )2s−3 = (F )2s−2.

Thus we obtain ψ ∈ R
√

(F )2s−2. □
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